Bike sharing systems often suffer from poor capacity management as a result of variable demand. These bike sharing systems would benefit from models to predict demand in order to moderate the number of bikes stored at each station. In this paper, we attempt to apply a graph neural network model to predict bike demand in the New York City, Citi Bike dataset.
translated by 谷歌翻译
This paper presents a new approach for analyzing and identifying potentially useful generalized plans. It presents a new conceptual framework along with an algorithmic process for assessing termination and reachability related properties of generalized plans. The presented framework builds upon classic results on the analysis of graphs to decompose generalized plans into smaller components in a novel algorithm for conducting a hierarchical analysis for termination of arbitrary generalized plans. Theoretical analysis of the new framework establishes soundness of the presented algorithms and shows how it goes beyond existing approaches; empirical analysis illustrates the scope of this approach. Our analysis shows that this new approach can effectively identify termination for a significantly larger class of generalized plans than was possible using existing methods.
translated by 谷歌翻译
In many real-world problems, the learning agent needs to learn a problem's abstractions and solution simultaneously. However, most such abstractions need to be designed and refined by hand for different problems and domains of application. This paper presents a novel top-down approach for constructing state abstractions while carrying out reinforcement learning. Starting with state variables and a simulator, it presents a novel domain-independent approach for dynamically computing an abstraction based on the dispersion of Q-values in abstract states as the agent continues acting and learning. Extensive empirical evaluation on multiple domains and problems shows that this approach automatically learns abstractions that are finely-tuned to the problem, yield powerful sample efficiency, and result in the RL agent significantly outperforming existing approaches.
translated by 谷歌翻译
This paper addresses the problem of reliably and efficiently solving broad classes of long-horizon stochastic path planning problems. Starting with a vanilla RL formulation with a stochastic dynamics simulator and an occupancy matrix of the environment, our approach computes useful options with policies as well as high-level paths that compose the discovered options. Our main contributions are (1) data-driven methods for creating abstract states that serve as endpoints for helpful options, (2) methods for computing option policies using auto-generated option guides in the form of dense pseudo-reward functions, and (3) an overarching algorithm for composing the computed options. We show that this approach yields strong guarantees of executability and solvability: under fairly general conditions, the computed option guides lead to composable option policies and consequently ensure downward refinability. Empirical evaluation on a range of robots, environments, and tasks shows that this approach effectively transfers knowledge across related tasks and that it outperforms existing approaches by a significant margin.
translated by 谷歌翻译
双耳音频为听众提供了沉浸式体验,可以增强增强和虚拟现实。然而,录制双耳音频需要专门设置,具有左耳和右耳的麦克风的假人头部。这种录制设置难以构建和设置,因此单声道音频已成为公共设备中的首选选择。为了获得与双耳音频相同的影响,最近的努力已经针对从场景的视觉输入上升降单声道音频到双耳音频。这种方法没有使用一个重要的提示来任务:不同声音产生对象来自麦克风的距离。在这项工作中,我们认为场景的深度映射可以作为诱导场景中不同对象的距离信息的代理,用于音频双耳的任务。我们提出了一种新颖的编码器解码器架构,具有分层关注机制来共同编码图像,深度和音频特征。我们在最先进的变压器网络上设计网络,用于图像和深度表示。我们凭经验展示了所提出的方法对于两个具有挑战性的公共数据集公平游戏和音乐 - 立体声舒适地表现出最先进的方法。我们还展示了定性结果,该方法能够专注于任务所需的正确信息。项目详细信息可用于\ url {https://krantiparida.github.io/projects/bomobinaural.html}
translated by 谷歌翻译
我们介绍了语言信息的潜在行动(LILA),这是在人机协作的背景下学习自然语言界面的框架。 Lila落在共享自主范式下:除了提供离散语言输入之外,人类还有低维控制器$ - 例如,可以向左/向右和向右移动2自由度(DOF)操纵杆$ - $操作机器人。 LILA学习使用语言来调制本控制器,为用户提供语言信息的控制空间:给定“将谷物碗放在托盘上的指示”,LILA可以学习一个二维空间,其中一个维度控制距离的距离机器人的末端执行器到碗,另一个维度控制机器人的末端效应器相对于碗上的抓地点。我们使用现实世界的用户学习评估LILA,用户可以在操作7 DOF法兰卡·埃米卡熊猫手臂时提供语言指导,以完成一系列复杂的操作任务。我们表明LILA模型不仅可以比仿制学习和终端效应器控制基线更高效,而且表现不变,但它们也是质疑优选的用户。
translated by 谷歌翻译
本文介绍了吉达,旨在旨在针对非AI专家的外展和教育努力的AI系统。吉达采用了综合任务和运动规划和解释的研究思路的新颖综合。吉达帮助用户创造高级直观的计划,同时确保他们将由机器人执行。它还为用户提供了关于错误的自定义解释,并有助于提高他们对AI规划的理解以及基础机器人系统的限制和功能。
translated by 谷歌翻译
In data containing heterogeneous subpopulations, classification performance benefits from incorporating the knowledge of cluster structure in the classifier. Previous methods for such combined clustering and classification either 1) are classifier-specific and not generic, or 2) independently perform clustering and classifier training, which may not form clusters that can potentially benefit classifier performance. The question of how to perform clustering to improve the performance of classifiers trained on the clusters has received scant attention in previous literature, despite its importance in several real-world applications. In this paper, first, we theoretically analyze the generalization performance of classifiers trained on clustered data and find conditions under which clustering can potentially aid classification. This motivates the design of a simple k-means-based classification algorithm called Clustering Aware Classification (CAC) and its neural variant {DeepCAC}. DeepCAC effectively leverages deep representation learning to learn latent embeddings and finds clusters in a manner that make the clustered data suitable for training classifiers for each underlying subpopulation. Our experiments on synthetic and real benchmark datasets demonstrate the efficacy of DeepCAC over previous methods for combined clustering and classification.
translated by 谷歌翻译
The rapid development of remote sensing technologies have gained significant attention due to their ability to accurately localize, classify, and segment objects from aerial images. These technologies are commonly used in unmanned aerial vehicles (UAVs) equipped with high-resolution cameras or sensors to capture data over large areas. This data is useful for various applications, such as monitoring and inspecting cities, towns, and terrains. In this paper, we presented a method for classifying and segmenting city road traffic dashed lines from aerial images using deep learning models such as U-Net and SegNet. The annotated data is used to train these models, which are then used to classify and segment the aerial image into two classes: dashed lines and non-dashed lines. However, the deep learning model may not be able to identify all dashed lines due to poor painting or occlusion by trees or shadows. To address this issue, we proposed a method to add missed lines to the segmentation output. We also extracted the x and y coordinates of each dashed line from the segmentation output, which can be used by city planners to construct a CAD file for digital visualization of the roads.
translated by 谷歌翻译
Psychology research has long explored aspects of human personality such as extroversion, agreeableness and emotional stability. Categorizations like the `Big Five' personality traits are commonly used to assess and diagnose personality types. In this work, we explore the question of whether the perceived personality in language models is exhibited consistently in their language generation. For example, is a language model such as GPT2 likely to respond in a consistent way if asked to go out to a party? We also investigate whether such personality traits can be controlled. We show that when provided different types of contexts (such as personality descriptions, or answers to diagnostic questions about personality traits), language models such as BERT and GPT2 can consistently identify and reflect personality markers in those contexts. This behavior illustrates an ability to be manipulated in a highly predictable way, and frames them as tools for identifying personality traits and controlling personas in applications such as dialog systems. We also contribute a crowd-sourced data-set of personality descriptions of human subjects paired with their `Big Five' personality assessment data, and a data-set of personality descriptions collated from Reddit.
translated by 谷歌翻译